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Abstract—Semantic image segmentation, which assigns la-
bels in pixel level, plays a central role in image understanding.
Recent approaches have attempted to harness the capabilities of
deep learning. However, one central problem of these methods is
that deep convolutional neural network gives little consideration
to the correlation among pixels. To handle this issue, in this paper,
we propose a novel deep neural network named RelationNet,
which utilizes CNN and RNN to aggregate context information.
Besides, a spatial correlation loss is applied to train RelationNet
to align features of spatial pixels belonging to same category.
Importantly, since it is expensive to obtain pixel-wise annotations,
we exploit a new training method to combine the coarsely and
finely labeled data. Experiments show the detailed improvements
of each proposal. Experimental results demonstrate the effective-
ness of our proposed method to the problem of semantic image
segmentation, which obtains state-of-the-art performance on the
Cityscapes benchmark and Pascal Context dataset.

I. INTRODUCTION

Semantic image segmentation is about labeling each pixel
in the image with the class of its enclosing object or region.
It attracts increasing attentions rapidly in computer vision and
pattern recognition research community due to its importance
for automatic driving, remote sensing and medical image
processing. IAt’s important to use semantic segmentation to es-
timate the precise boundary rather than using object detection
to obtain coarse bounding box which only delineates rough
location of an object.

To address this task, in the previous decades, tradi-
tional methods depend on hand-crafted features combined with
classifiers. Structured prediction technique [1][2] and context
information embedding[3] have achieved substantial improve-
ments. Recently, deep learning network has been widely used
for semantic segmentation which achieves promising perfor-
mance and has become the dominant solution. FCN (Fully
Convolutional Network) [4] replaces fully connected layers
with convolutional layers, and is adopted by state-of-the-art
image semantic segmentation methods. These deep learning
based methods mainly contain two steps, feature extraction
and pixel-wise classification.

Designing a discriminative feature representation of a
pixel is the key challenge in pixel-wise labeling problem.
FCN framework makes progress with development of a more
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Fig. 1. Visualization of feature embedding computed densely from input im-
ages. Two different network used to extract the feature before the classification
subnet (compressed to the three dimensions by the PCA for visualization), our
RelationNet with SCL has more consistency inside objects and the sharper
boundary near contours in feature space.

discriminative feature representation from VGG [5][6], ResNet
[7][8][9] to DenseNet [10]. Multi-Scale technology is an-
other solution to learn better feature representation, and can
be roughly classified into three categories: image pyramid,
encoder-decoder networks and extra module for multi-scale
feature. Typical works [11][12][13] use image pyramid to
extract and merge features from different scales, as the small
scale image contains the context information while larger scale
image includes the details. Since higher layers of CNN have
larger scale of receptive field than lower layers, the encoder-
decoder structure [14] learns multi-scale representation by
combining the feature maps from different layers. Extra mod-
ules on the top of the original feature extraction network
[6][7] use scale-aware operation (eg. dilated convolution or
grid pooling) to get multi-scale feature embedding.

Pixel-wise classification usually uses structural prediction
to refine the result according to image edges, appearance
and spatial consistency. The pioneer work [6] uses CRF
(Conditional Random Field) as post processing to refine the
results. Following methods [16][17] incorporate CRF to FCN
which are jointly trained while other work [13] uses deep
convolution neural network to estimate the CRF. Besides,
domain transform [18] is used to combine edge detection with
semantic image segmentation.

FCN considers image semantic segmentation as a pixel-
level classification problem, while it ignores the relation of
pixel-wise features belonging to the same object and discrim-
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Fig. 2. Visualization of our proposed architecture. The architecture for feature extraction is ResNet38 [9], but we replace the second convolution in the block
6 and 7 with Deformable Convolution [15]. Next, feature maps are fed into relation module to aggregate features. In the end, classification subnet aims at
pixel-wise classification when similarity estimation subnet pays attention to the relatedness of spatial pixels.

ination of features from different object (Fig. 1c). Different
from the structural classification that considers relations in
the final result, in this paper, we propose a Relation Module
which consider the relation with high level features. Moreover,
similarity estimation subnet with spatial correlation loss is
proposed to make the learned features more discriminative
(Fig. 1d).

Experimental results demonstrate that our approach
achieves state-of-the-art performance on the Cityscapes [19]
and Pascal Context [20] dataset with mean IoU 82.4% and
48.4% without CRF. Our main contributions are three holds:
• Relation Module is proposed to aggregate the feature

representation inside the objects.
• Similarity Estimation Subnet with SCL (Spatial Corre-

lation Loss) is developed to learn the relatedness of
adjacent features.

• We exploit a better training method called Alternat-
ing Training for combining finely annotated data with
coarsely annotated data.

II. METHODS

As mentioned above, FCN is a straight architecture which
doesn’t consider about relatedness of adjacent features. To
solve this problem, we propose a method based on network
architecture and supervision. The method is illustrated in
Fig. 2, which can be divided into three parts for architec-
ture and two parts for losses. RelationNet contains feature
extraction, feature aggregation and similarity estimation, while
loss includes classification loss and spatial correlation loss.
In testing phase, the similarity estimation subnet is removed,
which is only used to supervise the similarity of adjacent high-
level features in the training proceed.

A. RelationNet

1) Network Architecture For Feature Exaction: Similar
to the work in [9], the proposed method uses ResNet38 to
learn feature representation. As demonstrated in [21], dilated

convolutions can maintain internal representations for high
resolution which are reducted by spatial pooling operation.
Moreover, deformable convolution [15] can learn suitable
dilations in order to fit the scale of objects.

Different from [9], we replace pooling layers (before
Block 2, 3 and 4) with increasing stride of corresponding
convolutional layers to 2 and substitute the second convolution
in Block 5 with dilation of 2. The second convolutions in
Block 6, 7 are replaced with deformable convolution [15].
Detailed experiments are shown in section III-A.

2) Relation Module For Feature Aggregation: In FCN, a
spatial channel of feature map means the embedding of cor-
responding pixel. Spatial adjacent features have more overlap
in receptive field. Therefore, adjacent features assigned to the
same label should have more similarity than those assigned
to the different label. With the observation that FCN can’t
distinguish features from each other even when their spatial
space is adjacent (Fig. 1 c), we implement Relation Module
to aggregate features as below:

fom,n =
−−→
Cell(fim,n, fim+4w,n+4h) (1)

Where fi, fo are the feature maps of input and output
respectively. There are four directions GRU (Fig. 1 c) left-
right bidirectional GRU is followed by up-down bidirectional
GRU. This setting makes network consider more about the
relationship among adjacent features. Due to lesser GPU
memory occupation and faster convergence of GRU (Gated
Recurrent Unit) than RNN (Recurrent Neural Network) and
LSTM (Long Short-Term Memory), We choose GRU as the
element of our Relation Module.

3) Similarity Estimation Subnet For Comparison: The
features assigned to the same label should have more similarity
than the features assigned to different label in feature space.
Feature alignment means features belonging to the same label
should be aggregated. To solve feature-aligned problem, we
propose a similarity estimation subnet, which is supervised by
SCL (Spatial Correlation Loss) to classify a pair of features
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Fig. 3. Visualization of shift feature operation. For example, there are 4× 4
feature map, and first, we pad zero in the border which called anchor feature,
and then the feature shift in the 6× 6, and finally we get correlation feature
with the operation of cropping and concatenating anchor feature and shift
feature.

which belong to the same object or not (i.e. binary classifica-
tion).

Fig. 3 shows our shift feature operation to align feature.
We first apply padding operation on the feature map out of
Relation Module and get anchor feature, then shift anchor fea-
ture with offset4w,4h to get shift feature. With operation of
cropping and concatenating aligned features of adjacent pixels,
we attain spatial correlation feature. Then correlation feature
is fed into similarity estimation subnet which is supervised by
SCL in Section. II-B2.

B. Training objective

Our final loss formulates is as follows:
L = Lohem + λLscl (2)

Fig. 4 shows the difference between two terms of the loss. The
Lohem dominates in total loss which pays attention to judging
class label, while the Lscl acts as auxiliary loss for predicting
the similarity of adjacent features. λ is weight coefficient used
to balance these two losses.

Fig. 4. Illustration of the goals with different losses. The OHEM aims at
distinguishing which class the feature should be (Black point and arrow),
while the SCL predicts the similarity so that pull the distance of the same
(Green color) and push distance of the different(Gray color).

1) Online Hard Example Mining(OHEM): Unbalanced
samples are usually present in datasets, especially in sematic
image segmentation dataset, causing the preference on train-
ing networks and less improvement on the hard examples
of semantic segmentation. To solve this problem, we adopt
OHEM [9] from [22] which can learn hard examples at stage
of training the network, loss function is formulated as below:

Lohem = 1∑N
i

∑K
j I{yi=j and pij<t}∗∑N

i

∑K
j I{yi = j and pij < t}logpij

(3)

Let K be the number of category cj in label space. For
simplicity, suppose that we convert the image into a one-
dimensional pixel array and there are N pixels we should do
prediction, and i is the mark number identifying the pixel. And
pij is the probability of pixeli assigned to the category cj . For
the ground truth, P (X,Y ) is set 1 where X and Y belong to
the same category. yi is the target label of pixeli. Comparing
with Cross-Entropy Loss, OHEM would sample the pixel-wise
loss according to threshold t so that the network will pay more
attention to the hard examples at the training stage.

2) Spatial Correlation Loss (SCL): The loss of vanilla
classification (same as OHEM) doesn’t consider about the
consistency inside instances in the spatial space. Inspired by
Center Loss [23], which consider the intra-class variations,
we propose SCL to considers intra and inter relation among
adjacent pixels (Fig. 4). Due to the importance of feature align-
ment mentioned in Section II-A3, SCL is attached to similarity
estimation subnet to predict the similarity. We formulate SCL
for a pixel in the spatial space as below:

L(Xmn, Xm+4w,n+4h)={
αlog(1−P (Xmn, Xm+4w,n+4h)) if ymn 6=ym+4w,n+4h

βlogP (Xmn, Xm+4w,n+4h) if ymn=ym+4w,0+4h

(4)

in which

α =
|ymn = ym+4x,n+4y|

|ymn = ym+4w,n+4h|+ |ymn 6= ym+4w,n+4h|

β =
|ymn 6= ym+4w,n+4h|

|ymn = ym+4w,n+4h|+ |ymn 6= ym+4w,n+4h|

(5)

|ymn = ym+4w,n+4h| and |ymn 6= ym+4w,n+4h| mean
the number of positive sample set and negative sample
set respectively. α, β are the weights for unbalanced data.
P (Xmn, Xm+4w,n+4h) is prediction probability of the spa-
tial relevant pixels belonging to the same category. In our
SCL, the pixelm,n, should be compared to the nearby
pixelm+4w,n+4h, where4w,4h range from [-1,0,1]. There-
fore, our SCL builds as follows:

Lscl=
1

N

W∑
m=1

H∑
n=1

1∑
4w=−1

1∑
4h=−1

L(Xmn, Xm+4w,n+4h) (6)

As in the equation 6, where N = WH|4w||4h| acts as
the term of normalization, a pixel is compared with the
nearby 9 pixels including itself. Relation module and similarity
estimation subnet with SCL bring about the discrimination
near contour and the consistency inside instances (Fig. 1).

C. Unsampling Strategy

The output stride of RelationNet is 1/8, as traditional in-
terpolations like bilinear interpolations would be inaccurate for
small objects and contours between two categories. Therefore,
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4-steps testing is used to get prediction which is unsampled to
origin size of image(as Fig. 5), which will suppress inaccuracy
by interpolation because coordinate value of feature maps is
the embedding of pixel locating at the center of respective
field.

Fig. 5. Illustration of the multi-steps test. Each color means the result of one
step testing, and the point in the image means the center of receptive field.
We shift the image for testing in order to get the result of each pixel instead
of using interpolations.

III. EXPERIMENTS

Cityscapes [19] contains 5000 high quality pixel-level
finely annotated images (Fig. 7 a) and 19998 coarsely an-
notated images (Fig. 7 b), collected from 50 cities, which is
used for auto-driver. Images are divided into 2975, 500, 1525
images for training, validation, and testing respectively. This
dataset contains 19 categories which occur in auto-driver at
most often. For ablation experiments, we train network with
fine training data or both fine and coarse data (marked with
†), and test on the fine validation set. For final result, we train
RelationNet with fine training, validation data as well as coarse
data (marked with ‡), and test on the server 1.

We report metrics as below: 1) pixel accuracy, which is
the percentage of correctly labeled pixels. 2) mean value of
class-wise pixel accuracies, 3) mean IoU score, which is the
mean value of class-wise intersection-over-union scores.

TABLE I
ABLATION EXPERIMENTAL RESULTS ON CITYSCAPES VALIDATION. †

MEANS NETWORK IS TRAINED WITH ADDING COARSE DATA.

Network
Loss Choice

CE OHEM mIoU(%) mAcc(%) Acc(%)

ResNet101
X 70.14 78.93 95.04

X 72.12 80.43 95.29

ResNet38

X 73.64 82.16 95.27
X 77.39 84.47 95.99

Architecture Choices
+DCN 78.40 85.23 96.12

+Relation 78.43 86.20 96.05
+DCN +Relation 79.17 85.99 96.17

Alternative Training
Stage1 79.88 86.83 96.26

Stage1 + Multi-Steps 80.92 87.54 96.53
Stage2† + Multi-Steps 81.16 88.24 96.46
Stage3 + Multi-Steps 81.76 88.69 96.77

A. Architecture Choices

To evaluate RelationNet, we conduct experiments with
several setting as Tab. I, which includes the replacement
of convolution, the effectiveness of our proposed Relation

1https://www.cityscapes-dataset.com/benchmarks/

Module, and the combination of the DCN (Deformable Con-
volution Networks)[15] and Relation Module. As listed in
Tab. I, ResNet with DCN works better than the traditional
convolution, which yields results 78.40%/85.23% in terms of
mIoU and mAcc, surpassing our ResNet-38 with OHEM by
1.01%/0.76%. Also, our Relation Module attached to the tra-
ditional convolution network gets the results 78.43%/86.20%,
exceeding the ResNet-38 with OHEM by 1.04%/1.73%. As the
DCN can be seen as the attention mechanism, Relation module
with DCN gets the improvement of 1.78%/1.52% than the
ResNet-38 with OHEM. All results mentioned above indicate
that our relation module pays an important role on powerful
feature representation.

B. Loss Choices

mIoU（without SCL）: 79.17

mIoU: 79.88

mAcc（without SCL）: 85.99

mAcc: 86.83

85.9
86
86.1
86.2
86.3
86.4
86.5
86.6
86.7
86.8
86.9

79.1
79.2
79.3
79.4
79.5
79.6
79.7
79.8
79.9

80

0.001 0.01 0.1 1 10 100 1000

mAcc (%)mIoU (%)

weight λmIoU（without SCL） mIoU
mAcc（without SCL） mAcc

Fig. 6. Quantitative analysis of weight λ in terms of mIoU and mAcc. The
results are obtained by single scale without multi-steps test.

As Tab. I shows, comparing OHEM with cross entropy
loss, we find the effectiveness of the OHEM that it can improve
the results because of unbalance samples. Experientially, we
set threshold t 0.6 to sample hard examples. We experiment
with setting SCL weight λ between 0.001 and 1000, Fig. 6
shows the results comparing to RelationNet without SCL.
Empirically, λ = 0.1 yields the best performance. The
introduced similarity estimation subnet with SCL helps to
optimize the learning process while not affecting learning in
the master branch. The improvements 0.71%/0.84% in terms
of mIoU/mAcc make us believe that deep networks will benefit
from the proposed similarity estimation subnet with SCL.

C. Training Methods
TABLE II

RESULTS ON CITYSCAPES VAL SHOW THAT TRANSFERING FROM
DIFFERENT PRE-TRAINED MODELS MAY LEAD TO DIFFERENT LOCAL

MINIMUMS.

Network Finetune mIoU(%) mAcc(%) Acc(%)
ResNet101-Relation cityscapes 72.23 80.34 95.28
ResNet101-Relation ImageNet [24] 73.70 81.19 95.46
ResNet38-Relation cityscapes 76.06 83.32 95.84
ResNet38-Relation ImageNet [24] 78.43 86.20 96.05

1) The impact of the Pre-trained Model: As irrelevance
of features in a trained CNN (eg. Fig. 1 c), directly training
from a pre-trained model from Cityscapes may cause Relation
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Module converges improperly. As Tab. II shows, experiments
in ResNet38 and ResNet101 prove our hypothesis. Using the
pre-trained model on the Cityscapes, Relation Module may
fall into the local minimum. Only with pre-trained model
from the ImageNet, RelationNet can converge properly when
the network of feature extraction and the network of feature
aggregation are trained at the same time, this process is also
quite different from [18] which uses GRU to smooth the result.

Fig. 7. Illustration of the data label in the Cityscapes dataset. The coarsely
labeled data lose the boundary information.

2) Alternating Training: As coarse data is roughly la-
beled main parts of objects (eg. Fig. 7), while the contour
between objects is not labeled so that it loses the information
of contour, directly applying SCL in coarse data may cause
the incorrectness of aligning features. Inspired by the idea of
[25] which uses Alternating Training strategy to train RCNN
and Region Proposed Network, we adopt Alternating Training
to train the semantic image segmentation.

First, we train RelationNet with only fine data using SCL
and OHEM (Stage 1), then train the network with coarse data
but not with SCL (Stage 2). Finally, we fine-tune RelationNet
with only fine data using SCL and OHEM (Stage 3). In this
way, we can merge a large range of coarsely labeled data
which contains main part with a little of finely labeled data
that includes boundary information together. Results on Tab. I
show the effectiveness of our proposed training methods with
an improvement of 0.6%. It’s remarkable that our proposed
training method for combining coarse data and fine data can
economize the expensive pixel-level labeling time.

D. Implementation Details

We set the batchsize to 8 during training for all exper-
iments and use pre-trained model from ImageNet[24]. The
learning rate sets 5×10−4 for the first 35 epochs and learning
rate goes down linearly from the 5 × 10−4 to 5 × 10−6 for
the last 25 epochs. For data arguments, we randomly flip and
resize images ranging from 0.55 to 1.3 and randomly crop it to
(512, 520). For Alternating Training, Stage1, Stage2, Stage3
are trained with 60, 30, 15 epoches respectively.

E. Experimental Results

1) Cityscapes: Statistics in Tab. III show that our pro-
posed method outperforms other methods with notable ad-
vantage. For equal comparison, we use the fine training data
(2975 images) and coarse data to train our final model and
our method yields 80.8% mIoU. Fig. 8 shows our comparison
with our baseline, which indicates that our experimental results
have less noise and more consistency inside an object. With

Fig. 8. Results of RelationNet on cityscapes obtained by single scale and
single model, which are compared with our baseline(OHEM).

TABLE III
RESULTS ON CITYSCAPES TESTING SET. †,‡ MEANS TRAINING WITH BOTH
THE COARSE AND FINE TRAINING OR TOTAL FINE DATA. IIOU IS SPECIAL

METRIC IN CITYSCAPES DATASETS.

Method IoU cla.(%) iIoU cla.(%) IoU cat.(%) iIoU cat.(%)
CRF-RNN [16] 62.5 34.4 82.7 66.0
FCN [4] 65.3 41.7 85.7 70.1
LRR [12] 69.7 48.0 88.2 74.7
DeepLabv2 CRF [6] 70.4 42.6 86.4 67.7
Piecewise [13] 71.6 51.7 87.3 74.1
Global-Local-Refinement [26] 77.3 53.4 90.0 76.8
TuSimple [27] 77.6 53.6 90.1 75.2
SAC multiple [28] 78.1 55.2 90.6 78.3
PSPNet [7] 78.4 56.7 90.6 78.6
ResNet38 [9] 78.4 59.1 90.9 81.1
Our RelationNet 79.3 60.7 91.2 81.6
LRR [12] ‡ 71.8 47.9 88.4 73.9
Segmodel [29] ‡ 79.2 56.4 90.4 77.0
TuSimple Coarse [27] ‡ 80.1 56.9 90.7 77.8
Netwarp [30] ‡ 80.5 59.5 91.0 79.8
ResNet38 [9] ‡ 80.6 57.8 91.0 79.1
PSPNet [7] ‡ 81.2 59.6 91.5 79.2
Our RelationNet ‡ 82.4 61.9 91.8 81.4

adding fine validation dataset, we achieve 82.4% mIoU over
the benchmark2. Results on Tab. I show the improvements
1.05% in terms of mIoU on Cityscapes val.

2) Pascal Context: This dataset [20] consists of 4998
images for training and another 5105 images for validation.
Pixels either belong to background category or 59 semantic
categories, including bag, food, sign, ceiling, ground, and
snow. Since the test set is not available, here we directly
test our result on the validation set. As shown in Tab. IV,
our method again performs the best scores in three evaluation
metric.

IV. CONCLUSION

We propose an effective Relation Module for feature
aggregation, use spatial correlation loss to get better feature
representation for each pixel, and exploit the effectiveness of
each proposal and Alternating Training strategy. Our experi-
ments suggest that our RelationNet joint trained with SCL and
OHEM gets powerful performances. Moreover, Alternating
Training would save expensive time-costing for labeling data.

2https://www.cityscapes-dataset.com/benchmarks/
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TABLE IV
RESULTS ON PASCAL CONTEXT[20] VAL SET WITH 5105 IMAGES. THE

BASELINE IS OUR RESNET38 WITHOUT OHEM AND SCL.

Method Acc(%) mAcc(%) mIoU(%)
FCN-8s [4] 65.9 46.5 35.1
BoxSup [31] - - 40.5
Context [32] 71.5 53.9 43.3
VeryDeep [21] 72.9 54.8 44.5
DeepLab v2 [6] - - 45.7
ResNet38 [9] 75.0 58.1 48.1
Our BaseLine 73.2 52.2 43.8
Our RelationNet 75.2 58.9 48.4

We get 82.4% and 48.4% mIoU which is state-of-the-art
results in the Cityscapes and Pascal Context dataset.
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